浸透および地震を考慮した河川堤防の安定化対策の解析

河川堤防を対象とした豪雨と地震の複合的な災害に対 する対策工の効果検証を目的とした 50G 場の遠心模型実 験の再現解析を実施した(LIQCA2D20)^{1),2)}。

図-1,表-1に模型概要図と模型材料一覧を示す。対策 工として上流側に止水性改良体,下流側に透水性改良体 を配置した。透水性改良体とは,透水性の高い砕石等に 少量のセメントスラリーと水中不分離材を添加し,空隙 を確保した状態で固化したもので,優れた透水性とせん 断強度を兼ね備えた材料である。

図-2 に解析モデルを示す。境界条件は、基盤層底面を 全方向固定,基盤層および基礎地盤の側面を水平固定・鉛 直自由境界とした。基礎地盤の天端および堤体盛土の法面 を流入-流出境界とした。表-3,4にモデルパラメータを示 す。基礎地盤および堤体盛土は三軸試験結果に基づいてパ ラメータを設定した。改良体は模型材料の一軸圧縮試験結 果からパラメータを設定した。水分特性曲線は,堤体材料, 基礎地盤,止水性改良体は共通とし,堤体材料の保水性試 験結果を用い,また,透水性改良体は,既往の研究におけ る単流砕石を参考に van-Genuchten のパラメータを設定し た。実験は、上流側水位を所定の水位まで上昇後、定常状 態に至るまで一定に保持し、その後、加振を行った。図-3,4 に上流側水位データと入力波形を示す。入力加速度 は,正弦波(2Hz, 250gal, 20波)である。解析では,実 験時に水圧計により取得した上流側水位を用いて浸透流 解析を行った後,実験と同様の入力波を用いてリスタート 解析を行った。表-4に実験および解析ケース一覧を示す。

図−3 上流側水位

【水位上昇過程】

図-5 に実験における加振直前の堤体内の水位を示す。 堤体内の水位は,堤体底面の中央部と上流側および下流側 法尻部における間隙水圧から算出した。各ケースで上流側 水位にばらつきがあるものの,無対策に比べて対策幅 2.0m の CASE2 の水位勾配は大きい。また,対策幅 4.0m

図─1 模型概要図 ま 1 横型せい ■

衣				
モデル名	材料	物性等		
堤体盛土	日光硅砂 4~8 号 カオリン粘土	$\begin{array}{l} D_{max}=2.0mm, \ U_c=5.7, \\ D_c=85\%, \ \rho_d=1.591g/cm^3, \\ w_{opt}=11.6\%, \\ k=2.71\times10^{-5}m/sec \end{array}$		
基礎地盤	東北硅砂6号	Dr=85%, ρ_d =1.621g/cm ³ , k=5.6×10 ⁻⁴ m/sec		
止水性改良体	セメント 改良体	$\rho_d = 1.795 \text{g/cm}^3$ k=6.8×10 ⁻¹⁰ m/sec		
透水性改良体	ポーラス コンクリート	ρ_d =1.836g/cm ³ , k=5.8×10 ⁻³ m/sec		
間隙水	粘性流体	η=50mPa-s		
7.5m 7.5				
改良体	健砂6号 Dr=85%	改良体 3:0m 基盤層 0.25m		

図-2 2次元 FEM モデル

表-2 モデルパラメータ (繰返し弾塑性モデル)

対象材料		堤体盛土	基礎地盤
NI 3% 竹 杆		Dc=85%	Dr=85%
密度	ρ_{t} (g/cm ³)	1.776	2.017
透水係数	k (m/sec)	5.4E-5	5.6E-4
初期間隙比	e ₀	0.677	0.629
圧縮指数	λ	0.0203	0.0061
膨張指数	К	0.0060	0.0045
擬似過圧密比	OCR	1.0	1.0
無次元化		851.9	1600.0
初期せん断係数	00/0m0	001.2	1000.0
変相応力比	M_{m}^{*}	1.459	1.441
破壊応力比	${ m M}^{*}{ m f}$	0.908	0.908
亜化胆粉巾の	B_0^*	2400	2800
使に因数中のパラメータ	B_1^*	50	50
· · · · ·	$C_{\rm f}$	0	0
規準ひずみ(塑性)	γ^{P*r}	0.007	0.006
規準ひずみ(弾性)	Y^{E^*r}	0.07	0.04
ダイレイタンシー	D_0	3.5	4.5
係数	n	3.0	1.2
異方性消失の	C.	2000	2000
パラメータ	Ud	2000	2000
初期飽和度	S_{r0}	0.63	1.0
水分特性曲線	α	1.8	1.8
パラメータ	n'	4.0	4.0

表-3 モデルパラメータ(弾性モデル)

			,
対象材料		止水性 改良体	透水性 改良体
密度	ρ_{t} (g/cm ³)	1.828	1.940
透水係数	k (m/sec)	1.0E-7	5.8E-3
I ama'の字巻	λ	1.1E+6	2.5E+6
Lamevy定数	μ	5.6E + 5	1.3E+6
初期飽和度	S_{r0}	1.0	0.1
水分特性曲線	α	1.8	19.0
パラメータ	n'	4.0	4.2

表-4 ケース一覧

ケーフタ	対策		
リーへ名	上流側	下流側	
CASE1	なし	なし	
CASE2	止水性改良体 2.0m	透水性改良体 2.0m	
CASE3	止水性改良体 4.0m	透水性改良体 4.0m	

では無対策,対策幅 2m に比べ水位が低く,透水性改良体 の排水効果が顕著である。図-6 に浸透解析終了後の飽和 度分布を示すが,対策工の効果により堤体内の飽和領域が 縮小しており,実験結果の傾向を再現できている。

【加振過程】

図-7 に加振後の変形状況を示す。無対策時は基礎地盤 の液状化に伴い法尻が外側に変形するとともに上流側の り面部も液状化による流動変形が発生した。これに対し対 策時には基礎地盤の側方変位および上流側の流動が抑制 された。これらの挙動を解析において概ね再現できている。

また,図-8 に堤体天端中央の沈下量の時刻歴を示す。 最終沈下量は実験値に対して解析値が最大2.0倍程度大き な値を示したが,沈下傾向や対策による沈下低減効果は, 実験と解析で概ね一致する結果であった。

参考文献

 足立,西尾,小林,市坪,渦岡:浸透および地震に対する既 設盛土の安定対策の効果検証(その1.遠心模型実験),第 56回地盤工学研究発表会,2021(投稿中).

2) 西尾, 足立, 小林, 市坪, 渦岡: 浸透および地震に対する既

設盛土の安定対策の効果検証(その2.数値解析),第56回 地盤工学研究発表会,2021(投稿中).

図-6 浸透流解析後の飽和度分布

